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Abstract. Given any complex symmetric non-singular (n x n) matrix S we show that it is 
always possible to find a (2n - I )  x (2n - I )  matrix X which is complex symmetric and unitary, 
and which contnins S as its leading minor. We also prove that, of the set of all complex 
symmetric unitary matrices which contain S as their leading minor, X is the smallest such 
matrix. We apply this result to the scattering matrix of atomic collision theory io correct a loss 
of unitarity due to the use of a finite basis set in the solution of a collision problem. 

1. Introduction: a problematic 

In atomic collision theory one is often concerned with setting up a scattering matrix S where 
the element Si) of S represents the transition probability form state i to state j .  From this 
scattering matrix one can then extract the physical observables for the colliding system 
under investigation, for example, total and differential cross sections, collision strengths, 
resonance widths, etc. The scattering matrix ought in theory to be unitarity. This has the 
physical interpretation of conservation of probability, that is, the sum of the probabilities 
of all the various possible outcomes of the collision is one. In practice, however. this is 
not always the case. For any real atomic system there is an infinitely numerable number of 
bound states and an infinitely denumerable number of continuum states, all of which would 
be included in an exact calculation, and whose inclusion would lead to an exactly unitary 
scattering matrix. Such an infinite basis set is obviously not practical. Often, however, 
one can surmount this difficulty by using a variational formulation so that, even with a 
finite basis set, unitarity of the scattering matrix is guaranteed, though the success of the 
calculation is obviously still limited by the finite size of the basis set. 

Recently, a new theory of electron capture by a fast, heavy, fully stripped projectile ion 
from a one-electron target ion, called phase-integral halfway-house variational continuum 
distorted wave (PIVCDW) theory, was inhoduced (Crothers 1987) and implemented (Brown 
and Crothers 1991) for the case of protons impinging on atomic hydrogen in the ground 
state. In this theory the scattering matrix S is given by 

S = U*(-OO)N-+(O)U'(-W). 

The evolution matrix U*(-W), derived variationally, represents the motion of the heavy 
particles from r = -OO to t = 0-. Similarly the evolution matrix Ut(-co), also derived 
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variationally, represents the motion of the heavy particles from r = O+ to t = +W. The 
matching matrix N-+(O) matches the two solutions at I = 0, so that, although at this point 
there is a local discontinuity of the wavefunction, the probability density is made to be 
continuous. The matrix N-+ (and therefore the matrix S) is symmetric. The evolution 
matrices are unitary. The problem is that the matching matrix N-' is not unitary because 
in a practical application of the theory we include only a finite number of bound states in 
our basis set. This lack of unitarity manifests itself in the total cross sections, which are 
generally too low due to the large amount of probability flux lost in the matching matrix. 
The question this paper seeks to address is, whether it is possible to correct this loss of 
unitarity in the scattering matrix without including more states in the basis and therefore 
considerably complicating and lengthening the calculation. In the next section we prove a 
theorem which shows this is indeed possible. 
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2. A theorem and its proof 

Theorem. If S is a complex symmetric non-singular ( n x n )  matrix then a complex symmetric 
unitary (Zn - 1) x (2n - 1) matrix X which contains S as its leading minor is given by 

x = - (  1 S A  ) 
6 AT Z 

where A is the n x (n - I )  matrix 

1 A = ( o c l e i B ~ ~ ( l )  oc2ei&u(Z),,, an-leien.~u(n-l) 

2 = diag(fieiQ',  &G", . . . , G e ' " - l )  

where U('), i = 1.2,  . . . , n - 1, are the eigenvectors of the Hermitian matrix SS' 
corresponding to the (n - 1) smallest eigenvalues li, i = 1,2,. . . , n - 1, and where 
the real constants U;, 0; and 

and 2 is the diagonal matrix 

i = 1,2, .  . . , n - 1, are given by 

= J i F Z  ,$+ = ir - arg (u(;)+s U")*) - 2el 

that is, X contains n - 1 arbitrary constants. 

A corollary to !he theorem. Of the set of matrices that are complex, symmetric and unitary, 
and which contain the matrix S as the leading minor, the matrix X is the smallest such 
matrix (that is, the one containing the least number of elements). 

Proof of theorem and corollary. Let X be given by 

where the superscript T denotes transposition. A is a rectangular (n x r )  matrix and Z a 
square ( r  x r )  matrix, where r is to be determined. Assume for the moment that Z is not 
symmetric. The requirement that X be unitary gives four matrix equations, namely 

SSt+AAt=I (2) 
SA* + AZt = 0 (3) 
ATSt + ZA' = 0 (4) 
A ~ A * + Z Z ~ = I  (5) 

We note that (3) and (4) are Hermitian conjugates of each other 
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The crux of the problem is to find the matrices A and Z such that XXt is a diagond 
matrix. It is then always possible to find another (without loss of generality) real diagonal 
matrix D such that X + DX and DX is unitary. 

Re-multiplying (2) by A and taking the complex conjugate of (5), we find 
In order to solve the equations (2)+5) we proceed as follows. 

SS'A + A(AtA) = A 
A ~ A  + z*zT = I. 

Substituting for AtA and rearranging, one then finds 

SStA = AZ*ZT. 

In order to see how (3) fits in with (8) if we take the conjugate of (3) and post-multiply by 
S we find that 

SS'A + SA*ZT = 0 .  

(SA* + AZ*)ZT = 0 .  

A*(Z - ZT)Zt = 0 .  

(9) 

(10) 

(11) 

Using the fact that S is symmetric we can substitute for SS'A from (8) to get 

Finally, using (3) we have 

Thus it is clear that if Z is symmetric then (3) is consistent with (2) and (5). 
In order to solve (8) for A, let 

H = SSt 
h = Z*ZT. 

Clearly H and h are Hermitian, therefore there exist unitary mahices M and N which 
diagonalize H and h respectively to D and E respectively, that i s  

MtHM = D = diag(A1, hz,  . . . ,A,) 
NthN = E = diag(p1, p?, . . . , p,) 

where 

M M ~ = M ~ M = I  N N ~ = N ~ N = I .  

The matrices M and N contain the orthonormal eigenvectors of H and h, respectively, in 
columns corresponding to the respective eigenvalues placed in ascending order, that is, 
AI  c A2 c . . c A,, p~ < p~ c ' .  . < f i r .  Substituting for H and h in (8), pre-multiplying 
by Mt and post-multiplying by N, we have 

DA = AE (14) 

where 

A = M A N ~ .  (15) 

Without loss of generality we may take the solution of (14) to be 
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where at eie, (ai. 0, real) are a set of complex constants to be determined, In other words 
we may choose E = D, and A to be a diagonal (n  x n) matrix (that is, r = n), If we now 
re-write (2) and (5) in terms of M, N and A we find 

G J N Brown and D S F Crothers 

(D tAAt ) ,  = O  i # j  
t i  

(E+A~A), ,  = O  i + j 
V 

as required. 

to be 
In order to find the matrix A from (15) we try N = I as a possible solution and take Z 

Z=diag(J;i;eiQ' , ~ e ' ~ , . . . , ~ e ' " )  (17) 

for real &. We note that, since the li 2 0, it is always possible to do this and keep 
the q5i completely arbitrary. We now find from (15) that A = M A, that is, the matrix A 
contains the n eigenvectors of H, each eigenvector being indeterminate with respect to a 
complex constant. In other words the columns of A are othogonal and normalized to a:. 
The problem now contains 3n constants to be determined: ai, 0, and @,, i = 1,2, . . . , n.  

We determine the real constantsai in the following way. We note that (2) is independent 
of 0; and gives a set of 2 "Cz simultaneous linear equations for the n ai. To show that this 
set of equations only has rank n,  i.e. a unique solution, we adopt the following notation: 
Let 

M = (U(1) U'?) , . . U")) 
A = ((yl ,ib'tu(I) ffzeit3u(?) , . . ) ,iS.u(") 

where 

is the ith eigenvector of H corresponding the the eigenvalue A,. From (2) we require 

But 
n 

M Mt = I j Uy)U,@)* = aij 
k=l 

and 
n 

M D M ~  = H  + E A ~ U ~ ~ ~ U ~ ) *  = H ~ ~ .  
k= I 

Rearranging these last two we find 
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Finally, equating coeFficients with (IS), we have the two important results 
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a n = G k = 1 , 2  , . . . ,  n 

The following is now clear: the rank of the set of simultaneous equations given by (2) is 
n with the nth solution always being czA = 0. For the problem at hand this means that, 
without loss of generality, we may take the matrix A to be n x (n - I), since the last column 
will otherwise contain only zeros. This means that 2 is an (n - 1) x (n - I )  diagonal matrix 
containing the n - 1 smallesr eigenvalues of H. This also proves the corollary that the 
matrix X must be of order (2n - 1) at least. 

We now determine 0, and q5i (i = I, 2, . . . , n - 1). We observe that the nature of A and 
2, and the fact that (3) is a homogeneous equation, allows us to write (3) in the alternative 
forms 

where M is an n x n matrix of the eigenvectors of H with the ith column multiplied by 
e'@, and Z is the n x n matrix 

We note from (22) that 

S=-M i M T  

which is consistent with the fact that S is symmetric. In matrix terminology this means 
that the matrix iM is congruent to S (Gantmacher 1959). We can now see that one of the 
parameters 0i, q5, is arbitrary. Using (21) we can solve for the q5i in terms of the 0,. Hence 

q5 j  = R - arg (U(i)+S U'"') - 20, . (23) 

We have now virtually solved the problem, in that XX' is diagonalt. It is clear from (20) 
and the fact that the eigenvectors are normalized to a: that XXf = cl,&,, so that, in the 
notation above we let X + b.?"X so that now XX' = I. This proves the theorem. 

3. A numerical example 

Let S be 

t The constants ai emure (2) holds and the p h  6; that (3) holds. The othogondity of the eigenveclors and 
the fact that 2 is diagonal means that the equality of (5) is also assured. 
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so that 
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I Ie-in/?a e-in/4 
4 2 

H = ssi = I ein/24 
4 

The diagonalizing matrix M turns out to be 

1 1 1 

- & ~ ~ i n / 2 4  , in/a &,in/% 
2 2 

- & L e i n / 4  -$r/4 gn/4 
2 2 

2 

with the diagonal matrix D given by 

Hence one finds that 

91 = 2 6  +tan-' ( 3 + 3  - - :z - 4 = 20, +tan-' ($) - :z 
so that the result is 

X =  2 

X 

where we have chosen 8, = 8, = 0. One now easily finds that XX' = 1. 

4. An application 

As described in the introduction, the scattering matrix S of PIVCDW is given by 

S = U*(-~O)N-+(O)U~(-~O) 
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where, due to the inclusion of only a finite basis set, the matrix N-+ (and therefore S) is 
no longer unitary. We now show how to correct this lack of unitarity using the theroem 
proven above. We shall concentrate on the simplest case, that is, a two-state basis set for 
which much of the unitarization procedure is analytic. We have also, however, investigated 
the convergence of the cross sections by performing a four-state calculation. 

We take for our example an undistorted travelling atomic orbital (UTAO) model of 
charge transfer between protons and atomic hydrogen (McCarroll 1961), in which we 
deliberately break the symmetry of the basis set at t = 0. This will allow us to concentrate 
on the essential features of the unitarization procedure without unduly complicating the 
mathematics. Although a simplification of the more refined PIVCDW approach, this approach 
mimics well the PIVCDW result. In what follows, the quantities v and b are measures of the 
impact velocity and the impact parameter, respectively, of the collision. 

In the two-state model for the total wavefunction we take 

vi = Q(t,&+(T, t )  +C:(":(T, t )  
where the +(-) indicates a out-going (in-coming) wavefunction, and 

$:(T, t) = W P .  tP?v(rp) 

t )  = Qdr, t)D:(TT) 

with 
Di(,.) = e+i8(ur-v.r) 

v 

Here the 0 ' s  are the travelling atomic orbitals and 6 is a time-independent function of U 
and b chosen in such a way as to mimic PIVCDW. The detailed form of S is not important, 
but physically it should 'switch off for large v and b. We chose 

I - ( I + q + l q ) e  I 2 -4 

vZq2 
6 =  q = vb 

We now find that the elements of the matrix U are given by 

UII  = U= = cos(Q) U12 = = -isin(Q) 
where 

where s, k and h are, respectively, the usual overlap, transition and polarization matrix 
elements (McCarroll 1961). The matrix elements of N-+, i.e. N;+ = NG' = CY and 
N;;+ = N;;' = p ,  are easily calculated by standard methods. A measure of the total cross 
section (in arbitrary units) for the inelastic process is given by 

(24) 
m 

CT = 2 1  db b 1&2(b)l2 

In order to correct the unitarity of the scattering matrix we correct the unitarity of the 
matching matrix N-+ in the manner described above. This means of course augmenting the 
evolution matrix by adding extra rows and columns in such a way as to leave its unitarity 
unaltered. Thus for the two-state model we have 

U 0  
u - g = (  0 1 )  
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AT 2 )  
N-+ A 

and 

U*N-+Ut U'A 
Saug = ( ATUt 2 

Using the theorem above we find that 

and 

that is, 

where once again without loss of generality we have taken 81 = 0 since its value does not 
alter the total cross section, which in view of (26) and (27) is now given by 

where S12(b) is still given by (25). Figures I and 2 show the quantities HI] and HI' as a 
function of b for several different U values, where H = N-+N-+t. Thus these figures show 
the lack of unitarity of the matching matrix N-+. Clearly N-+ is less unitary for small U 
but much closer to unitarity at larger U. The broken lines on the figures are the asymptotic 
values of HI, and HI*, i.e. their values in the limit U + W. This behaviour of HII and HI' 
is explained by the fact that the excited levels of the target play a more important role at 
lower energies, therefore their exclusion causes a relatively greater error at these energies 
than at higher energies. 

Figure 3 shows the quantity (or + B)-2 as a function of b for the same values of U as 
figures 1 and 2. As can be seen from (28) it is this quantity which, if it is bigger than 
one, raises the cross section. As the loss of unitarity is greatest for small values of U, as 
might be expected ((U + @)-' is also greatest for these values. The broken line once again 
represents the asymptote U + CO. 

Finally table 1 shows the values of U and uug calculated from (24) and (28), 
respectively. As expected, the cross section is raised for small. values of U but virtually 
unaltered for larger values of U. 

In order to investigate the convergence of the cross sections we have performed a four- 
state calculation, that is, we are now including the first excited state of each ion. The values 
of the four-state cross sections and the augmented cross sections are also shown in table 1. 
For the unitarization procedure to make sense, we require that, as the basis set becomes 
more complete. the scattering matrix becomes more unitary and U -P maus. We can show 
formally that this is indeed the case by the following argument. If the basis set is complete 
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0 1 ? 3 4 5 8 7 9 10 
b (arbitrary units) 

Figure 1. The diagonal matrix element HI I (see text) shown 3s a function of ‘impact parameter’. 
b. for a range of ‘impact velocities’, U. The deviation of H I  I from I represents a loss of unitnrity 
of the scattering mamix. The broken line represents the asymptote U + m. 

0 1 2 3 4 5 8 7 8 8 10 
b (arbitrary unllr) 

Figure 2. The offdiagonal matrix element Hlz (see text) shown us a function of ‘impact 
parameter’. b. for a range of ‘impact velocities’. U. The deviation of  HI^ from 0 represents a 
loss of unitarily of the scattering matrix. The broken line represents the asymptote v -t m. 

then 
H = N-+N-+t 
- - N-+N+- 

= (+- I ++} (++ I +-) 
= (+- I +-) (closure) 
= I  (orthonormality) 

where the $’s represent the (orthonormalized) basis set (Crothers 1987). All the eigenvalues 
of H are 1 and therefore U = uaaug. Clearly it is the property of closure that is affected by the 
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Figure 3. The quantity (m + fi)-I (see text) shown as a function of 'impact pmmeter', 
a m g e  of 'impact velocities'. v.  The broken line represents the asymptote U -t m. 

b, for 

Table 1. Cross sections o and augmented cross sections uaUg (ahitmy units) for a two-state 
(mlumns 2 4 )  and a four-state (columns 5-7) calculation by 'impact velocity' U (arbitrary 
units). Columns 4 and 7 represent the factor by which the uniwriwtion technique raises the 
cross sections in the two-state and four-snte oses. respectively, The numben in parentheses 
are exponents. 

2-mIe 4-state 

" 0  %"Z o a d u  U 0V"C u,un/u 

1.0 0.992(+0) 0.156(+1) 1.568 0.119(+1) 0.144(+1) 1.213 
1.1 OS24(+0) 0.111(+1) 1.346 0.957(+0) 0.110(+1) 1.154 
1 2  0.670(+0) 0.819(+0) 1.223 0.775(+0) 0.960(+0) I .  109 
1.3 0.534(+0) 0.615(+0) 1.152 0.617(+0) 0.665(+0) 1.078 
1.4 0.418(+0) 0.463(+0) 1.109 0.480(+0) 0.508(+0) 1.057 
1.5 0.323(+0) 0349(+0) 1.080 0.369(t0) 0.384(+0) 1.042 
1.6 0.248(+0) 01263(+0) 1.061 0.281(+0) 0.290(+0) 1.032 
1.7 0.189(+0) 0.198(+0) 1.048 0.213(+0) 0.218(+0) 1.024 
1.8 0.144(+0) 0.149(+0) 1.037 0,161(+0) 0.164(+0) 1.019 
1.9 0.109(+0) 0.113(+0) 1.029 0.122(+0) 0.124(t0) 1.014 
2.0 0.831(-1) 0.851(-1) 1.023 0.925(-1) 0.936(-1) 1.011 
2.5 0.198-1) 0.199(-1) 1.009 0.219(-1) 0.220(-1) 1,004 
3.0 0.538(-2) 0.540(-2) 1.004 0.593(-2) 0.594(-2) 1,002 
3.5 0.158(-2) 0.159(-2) 1.002 0.175(-2) 0.175(-2) 1,000 
4.0 0.504(-3) 0.504(-3) 1.001 0.556(-3) 0.556(-3) 1.000 

number of basis states, so that the more complete the basis set the better the approximation 
of I $+)($+ I by I. Our four-state results bear this out, in that the unitarization procedure 
makes a relatively smaller correction i n  this case than in the four-state case. 

It is also clear that, except at the lowest recorded velocities (U < 1.2), the two-state 
augmented cross sections are a better approximation to the four-state results. This shows 
that the method is of use in correcting cross sections for a loss of unitarity in the scattering 
matrix. Indeed our unitarkation procedure is analogous in this heavy-particle scattering 
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example to the so-called 'Buttle correction' (Buttle 1967) of R-matrix theory for light- 
particle scattering (Burke and Robb 1975), which corrects for a loss of unitarity due to a 
matching procedure at the R-matrix boundary. For the lowest velocities we find that the 
augmented two-state result tends to overestimate either of the four-state results. The reason 
for this is that scattering matrix at these velocities if far from unitarity (see figures I and 2) 
so that our approximation of the scattering matrix is likely to be less accurate. However, 
observation of the ratio of caUg to U at these velocities would lead us to conclude that the 
cross section had not converged and a new calculation was necessruy. In this way the 
unitarization procedure may act as a diagnostic for convergence by indicating whether or 
not it is necessary to include more states in the calculation. 

5. Conclusions 

We have proved a theorem and corollary which show how to unitarize a complex symmetric 
matrix. We have illustrated this by giving a simple numerical example. As an application 
we have shown that the technique may be used in a straightforward and simple manner 
to correct for a loss of unitarity in the scattering matrix of a heavy-particle rearrangement 
collision. We have illustrated this in an example where the basis set contains two states. 
We have also shown by performing a four-state calculation, that the unitarization procedure 
gives consistent results and has the ability to indicate whether or not the cross sections 
have converged. The method is obviously generalizable to any size of basis set. All one 
actually has to do in practise is to find the largest eigenvalue of the matrix H of (12) and 
divide the probability amplitudes by this number. Subroutines which find the eigenvalues 
of Hermitian matrices are readily available and very fast on modern computers. 
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